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Interaction of two liquid solitary waves in a trough resonator
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The interaction phenomena of two solitary waves observed by Wu, Keolian, and Rudnick [Phys. Rev.
Lett. 52, 1421 (1984)] in a trough resonator are analytically analyzed by the perturbative variation
method. The coalescence period and the first coalescence time for same-polarity solitary waves as well
as the interaction force and the interaction potential are given, which, to a certain extent, can explain the
experimental phenomena well. The stable separation between two opposite-polarity solitary waves is ex-
plained to be the result of the balance of the soliton interaction force and an equivalent force due to the

action of the two end walls on the solitons.

PACS number(s): 47.35.+1, 43.25.+y, 03.40.Kf

I. INTRODUCTION

The discovery of a nonpropagating hydrodynamic soli-
ton in a trough resonator was reported by Wu, Keolian,
and Rudnick in 1984 [1,2]. Soon after, utilizing the
multiple-scale method, Larraza and Putterman [3] ob-
tained a single-solitary-wave solution. Similar results
were obtained by Miles [4] by means of the averaged-
Lagrangian method. Recently, the kink soliton on the
surface of a liquid was observed by Denardo et al. [5].
In the experiment of Wu, Keolian, and Rudnick [1], they
reported that “two solitons of the same polarity attract
each other, but only weakly if the distance between them
is significantly larger (say a factor of 3) than their
effective length. Two solitons which start out 20 cm
apart center-to-center, for example, take about 15 min to
reach a separation where they strongly overlap .... A
pair of solitons of opposite polarity in close proximity to
each other repel each other and slowly move until they
are approximately 12 cm apart, and then maintain this
separation indefinitely.” On this phenomenon, Ni and
Wei [6] presented a theoretical analysis based on a new
evolution equation which reduced from a new scale sup-
position. In this theory, the periodic coalescence is con-
sidered as the results of the fact that the wave form of
two solitary waves is modulated by cosine factors (for the
details, please see Ref. [6]). However, there exists a
significant difference between the theoretical results and
the experiments. Moreover, we find that the theory of
soliton interaction based on the perturbative variational

analysis (PVA) can better explain the phenomenon men-
tioned above. In this paper, based on the PVA presented
by Bondeson, Anderson, and Lisak [7] and Anderson and
Lisak [8], we obtained the coalescence period and the first
coalescence time for a same-polarity solitary wave as well
as the interaction force and potential existing between
two same- and opposite-polarity solitons, which also pro-
vides a vivid particle description for the interaction be-
tween two nonpropagating solitary waves.

II. PERTURBATION VARIATIONAL SOLUTION
FOR THE TWO-SOLITARY-WAVE INTERACTION

By means of a multiple scale method, Larraza and
Putterman [5] obtained the evolution equation of a soli-
tary wave in a trough resonator, that is,
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where

c?=g[T+kd(1—T*]/(2k),
A=k*6T*—5T*+16—9T"%)/8 ,

w?=kgT, k=mw/B, T=tanh(kd), g =980 cms™ 2,
with B and d representing the depth and width of the

trough, respectively. The relative height of the free sur-
face from the static surface is

g(x,y,t)=é-{[—iwcp,e”‘”cos(ky)+c.c.]+[%k2|§01|2( T2+ 1)cos(2ky)
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Making the transformation
r=—(0j—0’)t/(20),
&= \/mx , (3)
P1=V 22— /A Y

on Eq. (1), one obtains

2
i—ai—w+a—‘l2’+2|w|2w=o. @)
oT 13

Equation (4) gives a single propagating soliton solution,
Y(E&,t)=2a sech[2a(§—vT)]
Xexp[ivE/2—i{(1—4a*w?/4}7] . (5)

When a=1 and v =0, solution (5) is just the single
nonpropagating solitary wave.

According to the method of Anderson and Lisak [8],
the two-soliton solution can be approximated as a linear
superposition of two well-separated single solitons, i.e.,

U=v,+V,, (6)

¥, =2a,sech[2a;(E—&;)]
Xexpli2by(E—E ) +ig,—iT] (k=1,2), (T
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-, +T§2—+2|\yk|2\yk= —2Ty ,

(8)

where [k, I,k =1,2, and Ty, can be treated as a small
perturbation. In order to investigate the slow change in
soliton parameters that is due to their interaction, we re-
formulate Eqgs. (8) as a variational principle for the soli-
ton parameters according to the scheme of Refs. [7,8].
That is, Eqgs. (8) can be derived from the Lagrangian

L={ [, +L)dédr, )
where
L;= =i |w —W,— | — ¥, |?
1 k=21,2 [21 k ar Vi ar |‘Pki
2
— =X+, 4 (10)
o R

L, =2(¥, V3 +Wrw,)(|¥,|2+|w,[?), (11)

L, is the Lagrangian of the unperturbed NLS equation,
and the ¥, dependence in Ty, is neglected in deriving L,
by the variational derivative. For simplicity and solvabil-
ity, it is assumed that

la;—a,| <<a, |b;—b,|<<b,

where a(7), £.(7), bi(7), and @, (7) are slowly varying la;—a,|A<<1, ad>>1, (12)
functions of time. Since they are determined by the cou- b, —b,|lA<<1,
pled nonlinear Schrédinger (NLS) equations given below,
Eq. (6) is not the simple linear superposition under tradi-  where
tional meaning. It is clear that, when a=Na,+ay), b=1(b,+b,),
2a,=2a, 2b,=v/2, A=§ =&, Ddp=p,—¢;, (13)
—2b, & (T)+ @i (1) —7=—{(1—4a?)+v?/4}7, B=2bA+Agp .
Eq. (7) becomes Eq. (5), which corresponds to the distant- Substituting Eq. (7) into Egs. (9)—(11) results in
ly separated case. When two solitons become slightly L= f [{L;)+{L,)ld7, (14)
overlapped, the corresponding coupled NLS equations
describing their interaction can be written as where
d d
(L1>=fL1d§: 2 —‘4ak—%+80kbk—%——l6b,§ak+%a£ ’ (15)

k=12

<Lc>=chd§=4(16)f{aiazsech%Zl)sechzz+a;a,sech3(z2 )sechZ | Jcos[ Ap+2b,&;—2b,E,—2(by,—b,)]dE . (16)

Taking the variational derivative with respect to the parameters leads to

SL _ dak___a<Lc>

Spr  dT 3

SL d(agby) d(L.)

8¢, dr FY

oL d§; . a(LC>
5b, 0—8ay dr 32a, by b,

(18)

(19)
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By using approximation (12) and neglecting the relatively smaller quantities in the integral, one obtains

(L.)=4(64)a3cos(B)e 294

21

In the calculation of 9L, ) /3a; and 9{L_) /da;, a term in which a factor (§—£&;) is included and appears after the
derivative with respect to b, should be considered. For example,

(22)

a(L,)
ab” =4(32)a*sin(B)I ,
1
I:f+ao 8(2)
w [eza1(§~gl)+e*2a,(§~§l)]3[e2a2(§—§2)+e—2a2(§*§2)]
+ 8(2)
[e2a1(§—51)+e—2al(§“§l)][e202(§—§2)+

R —2a2(§——§2)]3 (E—&pdE .

According to Egs. (12), the first term in the above integral is far smaller than the second term. The following approxi-

mation can be used:
32z dz

~

—(1/DUE—6) 6t —6a
sz e & &

— (eZaz_'__ewZzzzC% )Be*2ax 2(12

with z =£—&; and C?=e %4, Similarly, —3(L,) /db,
and (L, ) /3a; can be calculated. Substituting Eqgs. (21)
and (22) into Egs. (17)—(20), and combining them, results
in

d(iak +bk)

=(—1)*64a3eF~2a5 | 24)
dr
a8y _ : —2aA 28 —2aA
p =4b, —8a sin(fB)e +32a“Asin(B)e , (25
-
APr _ 42, 2 . —2aA
dr =4(bj; +aj)—16ab sin(f)e

+64a%b Asin(B)e 2?2 +96a %sin(B)e ~294
—64a’A cos(B)e "2 . (26)

The second term in Eq. (25) and the third and fifth terms
in Eq. (26) are omitted in Ref. [9]. Besides, comparing
the results with Ref. [9], one can see that the discrepan-
cies in Egs. (25) and (26) also result from the sign
discrepancy of the first term in Eq. (23). However, those
differences do not influence the discrepancies §;—§&, and
@,— @, though they have an effect on the quantities &,
and ¢, themselves. Combining the two equations in Eq.

(24), one obtains i(a;+a,)+(b;+b,)=const; that
means
2a =a,+a,=const , 27
2b =b,+b,=const . (28)
By using Eqgs. (27) and (28), one obtains
4B 4b,-by), 29)
dr
989 _ ga(ay—a,)+8b(by—b,) (30)

dr

e_z"A——mAe_2le s (23)
8a

f

from Egs. (25) and (26), respectively. By making deriva-
tives on X =NaZ2ef~2¢2 and using Egs. (24), (29), and
(30), an equation of Y =i(a; —a,)+(b,—b,) is derived,

Y?—32q% B 200 =pM2=const , (31)

where N =32 is obtained by comparing the coefficients.
Combining Eqgs. (24) and (31) results in

4Y ey —Mm?], (32)
dr

which has a solution
Y=—Mtanh[4Mat+a,tia,] . (33)

Substituting (b, —b;)=Re(Y) into Eq. (29), one easily
obtains :

A(T)—A(0)
lencosh[8czpr+2a1]+cos[8aq7+2a2] G4
2a cosh(2a;)+cos(2a,)
with
ig+p=M=i4V2qge'P?~4 (35)

Considering the symmetry in the experiment, the ampli-
tude and the velocity of the two solitons are equal, i.e.,
a,=a, and b;=b,. When the solitons are at rest at the
beginning, i.e., b, =b, =0 or b =0, Egs. (34) and (35) be-
come (set a; =a,=0)

1 n cosh[8apr]+cos[8agT]

A(T)—A(O)ZZI > , (36)
iq +p=i4‘/§aeiA¢(0)/2—-aA(0) , 37)
where A(0)=£,(0)—£&,(0), Ap(0)=g,(0)—¢,(0). Equa-
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tion (36) represents the time evolution of two solitons
when they are interacting.

III. INTERACTION OF TWO
SAME-POLARITY SOLITONS

For the same-polarity solitons, where the initial phase
discrepancy A@(0)=0, Eq. (36) reduces to

A()—A(0)=In[cos(16V3a%e ~*40r)],  (38)
which represents the periodic coalescence of solitons ob-

served in the experiment of Wu, Keolian, and Rudnick
[1]. The period is

A(0)]
7 =7explaa0)] (39)
¢ 8V 2a?
It will take the time
= __——-\/_.5.;6 3 e Oarccos[e ~24(0)] (40)
a

for solitons to move from the initial separation A(0) to
the first coalescence [A(7)=0]. Obviously, the period T,
and the time 7, are very sensitive to the amplitude and in-
itial separation. Unfortunately, it is difficult to determine
the soliton amplitude according to the description in Ref.
[1]. In addition, at present, the theoretical determination
of the amplitude is not precisely identical to the experi-
mental one. According to Ref. [1], the experimental ex-
pression of the shape for the one-soliton solution is

E(x,y,t)=[2.8e ~1?—0.70]sech(x /1.12)
Xcos[2m(5.1)t] cm . (41)

Compared with Eq. (2), the theoretical result, by setting
f=5.1 Hz, there exists some discrepancy between the ex-
periment and theory. Hence the initial amplitude must
be estimated. Comparing Egs. (2) and (41), at y =0, the
amplitude of {(x,y,?) in Eq. (2) can be approximated by
A,+ A,, with A, and A4, representing the amplitudes of
the (0,1) mode and the (0,2) mode, respectively. Aty =B,
it can be approximated by 4, — 4,. On the other hand,
the values of the £(x,y,t) at y =0 and y =B are 2.1 and
0.53 cm, respectively, according to Eq. (41), which results
in 4,=1.32 and A4,=0.78. Finally, a=0.82 can be
determined by using Eq. (2) and the scale transformation
(3). Substituting this into Eq. (40) as the initial amplitude
and setting the initial separation to be 20 cm according to
the experiment [1], the time for the first coalescence can
be obtained, i.e., ; =21.8 min for f =5.1 Hzand ¢, =7.6
and 2.3 min for f=5.2 and 5.32 Hz, respectively. The
experimental result (about 15 min) is included in the
above values. Note that above value of the amplitude
(@ =0.82) is determined from Eq. (41) obtained by
f=5.1 Hz. It must be very different from 0.82 in the
case of f =5.2 Hz and f =5.32 Hz. Therefore the per-
turbation variational analysis presented in this paper can
explain the experiment fairly well.

It should be pointed out that Eq. (38) is not suitable for
the case of a short distance, since it is based on supposi-
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tion (12). One may also find some uncertainty in deter-
mining the coalescence time 7; with Eq. (40), which is de-
rived from Eq. (38). However, the time 7, can be con-
sidered as two parts. One is taken at the distant separa-
tion, the other is taken at the small separation. At the
distant separation, Eq. (12) is quite suitable because
aA>>1 is satisfied; since two solitons approach very
slowly, it will take a very long time. With A decreasing,
two solitons attract in an increasing manner and it takes
a very short time at the small separation. Therefore the
actual values of the period T, and coalescence time T,
can be represented by the approximation determined by
Egs. (39) and (40).

IV. INTERACTION OF TWO
OPPOSITE-POLARITY SOLITARY WAVES AND
THE TWO-NONPROPAGATING-SOLITONS STATE

For the opposite-polarity waves, the initial phase
discrepancy Ag(0)=1; then

A(T)—A(O)=%ln[cosh( 16V2a%~"20n] | (42)

which shows that two solitons are moving apart uniform-
ly. However, this phenomenon is not observed and can-
not be observed. Wu, Keolian, and Rudnick [1] observed
that the solitons repel each other and slowly move until
they are approximately 12 cm apart, and then maintain
this separation indefinitely. We consider that this stabili-
ty is due to the pinning effects of the two end walls,
which is equivalent to a force on the solitons. The
equivalent force balances the repulsion force between the
two solitons, and then the two solitons maintain their
separation indefinitely, which can be regarded as a new
stable mode, called the two-nonpropagating-solitons
state. The equivalent force of one of the end walls can be
estimated by the repulsion force of the two solitons be-
cause the two forces should be equal when stable. One
can find the interaction force to be

_1d*A(1)
2 dr?

where + represents repulsion from Eq. (42) and —
represents attraction from Eq. (38). The equivalent force
of the wall can be calculated by substituting the stable
separation into Eq. (43). Let r=—;—A, i.e., the distance of
each soliton from the center of the trough; the interaction
potential can be introduced as

U(r)=—fO’F<A)dr=¢64a2[1~e—4a*]. (44)

F =+256a3 ~24 | (43)

This is the repulsion (—) and attraction (+) potential
provided by each soliton for the others.

In summary, the interaction phenomena of two solitary
waves observed by Wu, Keolian, and Rudnick [1] in a
trough resonator are analyzed by the perturbative varia-
tion method. The coalescence period and first coales-
cence time for same-polarity solitons as well as the in-
teraction force and the interaction potential are given,
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which can explain the experimental phenomena to a cer-
tain extent. It is hypothesized in this paper that the two
end walls have an effect on the opposite-polarity solitons.
Finally, the solitons maintain their separation indefinitely
and form a stable mode called the two-nonpropagating-
solitons state, and, at the stable state, the force on the sol-

itary wave provided by the walls balances the repulsion
interaction force of the two solitons.
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